Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IEEE Transactions on Automation Science and Engineering ; : 1-0, 2023.
Article in English | Scopus | ID: covidwho-20238439

ABSTRACT

The sudden admission of many patients with similar needs caused by the COVID-19 (SARS-CoV-2) pandemic forced health care centers to temporarily transform units to respond to the crisis. This process greatly impacted the daily activities of the hospitals. In this paper, we propose a two-step approach based on process mining and discrete-event simulation for sizing a recovery unit dedicated to COVID-19 patients inside a hospital. A decision aid framework is proposed to help hospital managers make crucial decisions, such as hospitalization cancellation and resource sizing, taking into account all units of the hospital. Three sources of patients are considered: (i) planned admissions, (ii) emergent admissions representing day-to-day activities, and (iii) COVID-19 admissions. Hospitalization pathways have been modeled using process mining based on synthetic medico-administrative data, and a generic model of bed transfers between units is proposed as a basis to evaluate the impact of those moves using discrete-event simulation. A practical case study in collaboration with a local hospital is presented to assess the robustness of the approach. Note to Practitioners—In this paper we develop and test a new decision-aid tool dedicated to bed management, taking into account exceptional hospitalization pathways such as COVID-19 patients. The tool enables the creation of a dedicated COVID-19 intensive care unit with specific management rules that are fine-tuned by considering the characteristics of the pandemic. Health practitioners can automatically use medico-administrative data extracted from the information system of the hospital to feed the model. Two execution modes are proposed: (i) fine-tuning of the staffed beds assignment policies through a design of experiment and (ii) simulation of user-defined scenarios. A practical case study in collaboration with a local hospital is presented. The results show that our model was able to find the strategy to minimize the number of transfers and the number of cancellations while maximizing the number of COVID-19 patients taken into care was to transfer beds to the COVID-19 ICU in batches of 12 and to cancel appointed patients using ICU when the department hit a 90% occupation rate. IEEE

2.
Well-being In Later Life: The Notion of Connected Autonomy ; : 43-52, 2022.
Article in English | Scopus | ID: covidwho-2155600
3.
2020 Winter Simulation Conference ; : 771-781, 2020.
Article in English | Web of Science | ID: covidwho-1370857

ABSTRACT

Bed occupancy ratio reflects the state of the hospital at a given time. It is important for management to keep track of this figure to proactively avoid overcrowding and maintain a high level of quality of care. The objective of this work consists in proposing a decision-aid tool for hospital managers allowing to decide on the bed requirements for a given hospital or network of hospitals on a short-medium term horizon. To that extent we propose a new data-driven discrete-event simulation model based on data from a French university hospital to predict bed and staff requirements. We propose a case study to illustrate the tool's ability to monitor bed occupancy in the recovery unit given the admission rate of ED patients during the pandemic of Sars-Cov-2. These results give an interesting insight on the situation, providing decision makers with a powerful tool to establish an enlightened response to this situation.

SELECTION OF CITATIONS
SEARCH DETAIL